请选择 进入手机版 | 继续访问电脑版

人工智能论坛

 找回密码
 立即注册
查看: 3499|回复: 0

模式识别 和 机器学习 入门资源(转)

[复制链接]
发表于 2015-1-2 22:06:00 | 显示全部楼层 |阅读模式
机器学习入门资源不完全汇总( http://ml.memect.com/article/machine-learning-guide.html)
基本概念 | 入门攻略 | 课程资源 | 论坛网站 | 东拉西扯

感谢贡献者: tang_Kaka_back 本文是 机器学习日报的一个专题合集,欢迎订阅:请给hao 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。
下面从微观到宏观试着梳理一下机器学习的范畴:一个具体的算法,领域进一步细分,实战应用场景,与其他领域的关系。
入门攻略
大致分三类: 起步体悟,实战笔记,行家导读
机器学习入门者学习指南   (2013) 作者 白马 -- [起步体悟] 研究生型入门者的亲身经历
有没有做机器学习的哥们?能否介绍一下是如何起步的  -- [起步体悟] 研究生型入门者的亲身经历,尤其要看reyoung的建议
tornadomeet 机器学习 笔记 (2013) -- [实战笔记] 学霸的学习笔记,看看小伙伴是怎样一步一步地掌握“机器学习”
Machine Learning Roadmap: Your Self-Study Guide to Machine Learning (2014) Jason Brownlee -- [行家导读] 虽然是英文版,但非常容易读懂。对Beginner,Novice,Intermediate,Advanced读者都有覆盖。
A Tour of Machine Learning Algorithms (2013) 这篇关于机器学习算法分类的文章也非常好
更多攻略
机器学习该怎么入门   (2014)
What's the easiest way to learn machine learning   (2013)
What is the best way to study machine learning  (2012)
Is there any roadmap for learning Machine Learning (ML) and its related courses at CMU Is there any roadmap for learning Machine Learning (ML) and its related courses at CMU (2014)
课程资源
Tom Mitchell 和 Andrew Ng 的课都很适合入门
入门课程2011 Tom Mitchell(CMU)机器学习
英文原版视频与课件PDF 他的《机器学习》在很多课程上被选做教材,有中文版。
Decision Trees
Probability and Estimation
Naive Bayes
Logistic Regression
Linear Regression
Practical Issues: Feature selection,Overfitting ...
Graphical models: Bayes networks, EM,Mixture of Gaussians clustering ...
Computational Learning Theory: PAC Learning, Mistake bounds ...
Semi-Supervised Learning
Hidden Markov Models
Neural Networks
Learning Representations: PCA, Deep belief networks, ICA, CCA ...
Kernel Methods and SVM
Active Learning
Reinforcement Learning 以上为课程标题节选
2014 Andrew Ng (Stanford)机器学习
英文原版视频 这就是针对自学而设计的,免费还有修课认证。“老师讲的是深入浅出,不用太担心数学方面的东西。而且作业也非常适合入门者,都是设计好的程序框架,有作业指南,根据作业指南填写该完成的部分就行。”(参见白马同学的入门攻略)"推荐报名,跟着上课,做课后习题和期末考试。(因为只看不干,啥都学不会)。" (参见reyoung的建议)
Introduction (Week 1)
Linear Regression with One Variable (Week 1)
Linear Algebra Review (Week 1, Optional)
Linear Regression with Multiple Variables (Week 2)
Octave Tutorial (Week 2)
Logistic Regression (Week 3)
Regularization (Week 3)
Neural Networks: Representation (Week 4)
Neural Networks: Learning (Week 5)
Advice for Applying Machine Learning (Week 6)
Machine Learning System Design (Week 6)
Support Vector Machines (Week 7)
Clustering (Week 8)
Dimensionality Reduction (Week 8)
Anomaly Detection (Week 9)
Recommender Systems (Week 9)
Large Scale Machine Learning (Week 10)
Application Example: Photo OCR
Conclusion
进阶课程
2013年Yaser Abu-Mostafa (Caltech) Learning from Data -- 内容更适合进阶 课程视频,课件PDF Learning Problem
Is Learning Feasible?
The Linear Model I
Error and Noise
Training versus Testing
Theory of Generalization
The VC Dimension
Bias-Variance Tradeoff
The Linear Model II
Neural Networks
Overfitting
Regularization
Validation
Support Vector Machines
Kernel Methods
Radial Basis Functions
Three Learning Principles
Epilogue
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|积分充值|小黑屋|手机浏览|人工智能实验室 ( 苏ICP备12079930号

GMT+8, 2017-12-16 19:09 , Processed in 0.147674 second(s), 16 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表