请选择 进入手机版 | 继续访问电脑版

人工智能论坛

 找回密码
 立即注册
楼主: J101213

什么是人工智能?人工智能的定义?欢迎大家娇流!

[复制链接]
 楼主| 发表于 2017-11-20 13:11:00 | 显示全部楼层
现在到一个新的场景(图右),原来学习的那些工具都不存在了,完全是新的场景和物体,任务保持不变。你再来砸这个核桃试试看,怎么办?人当然没有问题,选这个木头做的桌子腿,然后砸的动作也不一样。这才是举一反三,这才是智能,这没有什么其他数据,没有大量数据训练,这不是深度学习方法。

那这个算法怎么做的呢?我们把对这个物理空间、动作、因果的理解还是表达成为一个Spatial,Temporal and Causal Parse Graph(STC-PG)。这个STC-PG包含了你对空间的理解(物体、三维形状、材质等)、时间上动作的规划、因果的推理。最好是这样子砸,它物理因果能够实现,可能会被砸开,再连在一块来求解,求时间、空间和因果的这么一个解析图,就是一个解。也就是,最后你达到目的,改变了某种物理的流态。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-20 13:47:00 | 显示全部楼层
我再强调几点:
一、这个STC-PG的表达是你想象出来的。这个理解的过程是在你动手之前就想好了的,它里面的节点和边大多数在图像中是没有的,也就是我称作的“暗物质”。

二、这个计算的过程中,大量的运算属于“top-down”自顶向下的计算过程。也就是用你脑皮层里面学习到的大量的知识来解释你看到的“蛛丝马迹”,形成一个合理的解。而这种Top-down的计算过程在目前的深度多层神经网络中是没有的。神经网络只有feedforward 向上逐层传播信息。你可能要说了,那不是有Back-propagation吗?那不是top-down。一年前,LeCun来UCLA做讲座,他看到我在座,就说DNN目前缺乏朱教授一直提倡的Top-Down计算进程。

三、学习这个任务只需要极少的几个例子。如果一个人要太多的例子,说明Ta脑袋“不开窍”,智商不够。顺便说一句,我在UCLA讲课,期末学生会给老师评估教学质量。一个常见的学生意见就是朱教授给的例子太少了。对不起,我没时间给你上课讲那么多例子,靠做题、题海训练,那不是真本事,也不是学习的本质。子曰:“学而不思则罔,思而不学则殆”。这里的“思”应该是推理,对于自然界或者社会的现象、行为和任务,形成一个符合规律的自洽的解释,在我看来就是一个STC-PG。

那么STC-PG是如何推导出来的呢?它的母板是一个STC-AOG,AOG就是And-Or Graph与或图。这个与或图是一个复杂的概率语法图模型,它可以导出巨量的合乎规则的概率事件,每一个事件就是STC-PG。这个表达与语言、认知、机器人等领域是一致的。在我看来,这个STC-AOG是一个统一表达,它与逻辑以及DNN可以打通关节。这里就不多讲了。
(我指朱松纯教授)(更多人工智能文章尽在http://www.qthmedia.com)
回复 支持 反对

使用道具 举报

发表于 2017-11-20 14:27:00 | 显示全部楼层
人工智能最重要的还是人,无“人”不谈智能。所以我不太相信所谓的人工智能威胁论。杭州数峰科技有限公司总部位于成都。只要是大数据与人工智能方向,希望人工智能能普惠人类为使命,辛勤的耕耘在人工智能最前沿。核心技术有:人脸识别,不良信息过滤,人脸贴纸,明厨亮、人脸考勤等等。欢迎所有的同行进行交流,更欢迎任何形式的商业合作。详情请猛戳:http://www.datapeak.com.cn/
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-21 09:26:00 | 显示全部楼层
计算机视觉小结:我简短总结一下视觉的历史。见下图。

视觉研究前面25年的主流是做几何,以形状和物体为中心的研究:Geometry-Based and Object-Centered。最近25年是从图像视角通过提取丰富的图像特征描述物体的外观来做识别、分类: Appearance-Based and View-Centered。几何当然决定表观。那么几何后面深处原因是什么呢?几何形状的设计是因为有任务,最顶层是有任务,然后考虑到功能、物理、因果,设计了这些物体再来产生图像,这是核心问题所在。我把在当前图像是看不见的“东西”叫dark matter。物理里面dark matter energy占95%,确确实实在我们智能里面dark matter也占了大部分。而你看到的东西就是现在深度学习能够解决的,比如说人脸识别、语音识别,就是很小的一部分看得见的东西;看不见的在后面,才是我们真正的智能,像那个乌鸦能做到的。


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-22 08:54:00 | 显示全部楼层
所以,朱松纯教授的一个理念是:计算机视觉要继续发展,必须发掘这些“dark matter”。把图像中想象的95%的暗物质与图像中可见的5%的蛛丝马迹,结合起来思考,才能到达真正的理解。现在大家都喜欢在自己工作前面加一个Deep,以为这样就算深刻了、深沉了,但其实还是非常肤浅的。不管你多深,不管你卷积神经网络多少层,它只是处理可见的图像表观特征、语音特征,没有跳出那5%,对吧?那些认为深度学习解决了计算机视觉的同学,说服你了么?如果没有,后面还有更多的内容。

视觉研究的未来,用一句话来说:Go Dark, Beyond Deep --- 发掘暗,超越深。

这样一来,视觉就跟认知和语言接轨了。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-23 12:29:00 | 显示全部楼层
认知推理:走进内心世界

上面讲到的智能的暗物质,已经属于感知与认知的结合了。再往里面走一步,就进入人与动物的内心世界Mind, 内心世界反映外部世界,同时受到动机任务的影响和扭曲。研究内涵包括:
Ta看到什么了?知道什么了?什么时候知道的?这其实是对视觉的历史时间求积分。

Ta现在在关注什么?这是当前的正在执行的任务。

Ta的意图是什么?后面想干什么?预判未来的目的和动机。

Ta喜欢什么?有什么价值函数?这在第九节会谈到具体例子。

自从人工智能一开始,研究者就提出这些问题,代表人物是Minsky:society of minds,心理学研究叫做Theory of minds。到2006年的时候,MIT认知科学系的Saxe与Kanwisher(她是朱松纯教授的一个项目合作者)发现人的大脑皮层有一个专门的区,用于感受、推理到别人的想法:我知道你在想什么、干什么。这是人工智能的重要部分。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-23 13:04:00 | 显示全部楼层
说个通俗的例子,你可能听到过这样的社会新闻:某男能够同时与几个女朋友维持关系,而且不被对方发现,就是他那几个女朋友互相不知情。这其实很难做到,因为你一不小心就要暴露了。他需要记住跟谁说过什么谎话、做过或者答应过什么事。这种人的这个脑皮层区一定是特别发达,而他的那些女朋友的这个区可能不那么发达。电影中的间谍需要特别训练这方面的“反侦察”能力,就是你尽量不让对方发现你的内心。这是极端状况。现实生活中,一般非隐私性的活动中,我们是不设防的,也就是“君子坦荡荡”。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-23 13:30:00 | 显示全部楼层

不光是人有这个侦察与反侦察的能力,动物也有(见上图)。比如说这个鸟(图左),它藏果子的时候,会查看周围是否有其它鸟或者动物在那里看到它;如果有,它就不藏,它非要找到没人看它的时候和地方藏。这就是它在观察你,知道你知道什么。图中是一个狐狸和水獭对峙的视频。水獭抓到鱼了以后,发现这个狐狸在岸上盯着它呢,它知道这个狐狸想抢它嘴里叼着的鱼。水獭就想办法把鱼藏起来,它把这个鱼藏到水底下,然后这个狐狸去找。这说明了动物之间互相知道对方在想什么。
小孩从一岁多的时候开始就有了这个意识。一个关键反应证据是:他会指东西给你看,你看到了、还是没看到的,他会知道。Felix Warneken现在在哈佛大学当心理学系的助理教授。他当博士生的时候做过一系列心理实验。一般一岁多的小孩能知道给你开门,小孩很乐意、主动去帮忙。小孩很早就知道跟人进行配合,这就是人机交互。你把这个小孩看成一个机器人的话,你要设计一个机器人,就是希望它知道看你想干什么,这是人工智能的一个核心表现。


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

发表于 2017-11-23 17:58:00 | 显示全部楼层
吧主可以写书了
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-11-24 09:10:00 | 显示全部楼层
尽管人工智能和认知科学,以及最近机器人领域的人都对这个问题感兴趣,但是,大家以前还都是嘴上、纸上谈兵,用的是一些toy examples作为例子来分析。要做真实世界的研究,就需要从计算机视觉入手。计算机视觉里面的人呢,又大部分都在忙着刷榜,一时半会还没意思到这是个问题。朱松纯的实验室就捷足先登,做了一些初步的探索,目前还在积极推进之中。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|积分充值|小黑屋|手机浏览|人工智能实验室

GMT+8, 2018-7-17 02:22 , Processed in 0.555799 second(s), 10 queries , Memcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表